Citrate secretion coupled with the modulation of soybean root tip under aluminum stress. Up-regulation of transcription, translation, and threonine-oriented phosphorylation of plasma membrane H+-ATPase.

نویسندگان

  • Hong Shen
  • Long Fei He
  • Takayuki Sasaki
  • Yoko Yamamoto
  • Shao Jian Zheng
  • Ayalew Ligaba
  • Xiao Long Yan
  • Sung Ju Ahn
  • Mineo Yamaguchi
  • Hideo Sasakawa
  • Hideaki Matsumoto
چکیده

The aluminum (Al)-induced secretion of citrate has been regarded as an important mechanism for Al resistance in soybean (Glycine max). However, the mechanism of how Al induces citrate secretion remains unclear. In this study, we investigated the regulatory role of plasma membrane H+-ATPase on the Al-induced secretion of citrate from soybean roots. Experiments performed with plants grown in full nutrient solution showed that Al-induced activity of plasma membrane H+-ATPase paralleled secretion of citrate. Vanadate and fusicoccin, an inhibitor and an activator, respectively, of plasma membrane H+-ATPase, exerted inhibitory and stimulatory effects on the Al-induced secretion of citrate. Higher activity of plasma membrane H+-ATPase coincided with more citrate secretion in Al-resistant than Al-sensitive soybean cultivars. These results suggested that the effects of Al stress on citrate secretion were mediated via modulation of the activity of plasma membrane H+-ATPase. The relationship between the Al-induced secretion of citrate and the activity of plasma membrane H+-ATPase was further demonstrated by analysis of plasma membrane H+-ATPase transgenic Arabidopsis (Arabidopsis thaliana). When plants were grown on Murashige and Skoog medium containing 30 microM Al (9.1 microM Al3+ activity), transgenic plants exuded more citrate compared with wild-type Arabidopsis. Results from real-time reverse transcription-PCR and immunodetection analysis indicated that the increase of plasma membrane H+-ATPase activity by Al is caused by transcriptional and translational regulation. Furthermore, plasma membrane H+-ATPase activity and expression were higher in an Al-resistant cultivar than in an Al-sensitive cultivar. Al activated the threonine-oriented phosphorylation of plasma membrane H+-ATPase in a dose- and time-dependent manner. Taken together, our results demonstrated that up-regulation of plasma membrane H+-ATPase activity was associated with the secretion of citrate from soybean roots.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Up-regulation of plasma membrane H+-ATPase under salt stress may enable Aeluropus littoralis to cope with stress

Plasma membrane H+-ATPase is a major integral membrane protein with a role in various physiological processes including abiotic stress response. To study the effect of NaCl on the expression pattern of a gene encoding the plasma membrane H+-ATPase, an experiment was carried out in a completely random design with three replications. A pair of specific primers was designed based on the sequence o...

متن کامل

Heavy metal regulation of plasma membrane H+-ATPase gene expression in halophyte Aeluropus littoralis

The present study was conducted to find the effect of three heavy metals, Ag, Hg and Pb on the expression level of a gene encoding plasma membrane H+-ATPase in Aeluropus littoralis. The experiment was laid out in a completely random design with three replications. The expression of the main gene was normalized to the expression of the housekeeping gene actin. Two 259 and 187 bp fragments were a...

متن کامل

Root plasma membrane H+-ATPase is involved in the adaptation of soybean to phosphorus starvation.

The plasma membrane H+-ATPase plays an important role in the plant response to nutrient and environmental stresses. However, the involvement of plant root plasma membrane H+-ATPase in adaptation to phosphate (P) starvation is not yet fully elucidated. In this study, experiments were performed with soybean roots in low-P nutrient solution (10 microM). Treatment with fusicoccin, an activator of t...

متن کامل

The role of VuMATE1 expression in aluminium-inducible citrate secretion in rice bean (Vigna umbellata) roots

Aluminium (Al)-activated citrate secretion plays an important role in Al resistance in a number of plant species, such as rice bean (Vigna umbellata). This study further characterized the regulation of VuMATE1, an aluminium-activated citrate transporter. Al stress induced VuMATE1 expression, followed by the secretion of citrate. Citrate secretion was specific to Al stress, whereas VuMATE1 expre...

متن کامل

PIN2 is required for the adaptation of Arabidopsis roots to alkaline stress by modulating proton secretion

Soil alkalinity is a widespread environmental problem that limits agricultural productivity. The hypothesis that an auxin-regulated proton secretion by plasma membrane H(+)-ATPase plays an important role in root adaption to alkaline stress was studied. It was found that alkaline stress increased auxin transport and PIN2 (an auxin efflux transporter) abundance in the root tip of wild-type Arabid...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant physiology

دوره 138 1  شماره 

صفحات  -

تاریخ انتشار 2005